rENaC is the predominant Na+ channel in the apical membrane of the rat renal inner medullary collecting duct.

نویسندگان

  • K A Volk
  • R D Sigmund
  • P M Snyder
  • F J McDonald
  • M J Welsh
  • J B Stokes
چکیده

The terminal nephron segment, the inner medullary collecting duct (IMCD), absorbs Na+ by an electrogenic process that involves the entry through an apical (luminal) membrane Na+ channel. To understand the nature of this Na+ channel, we employed the patch clamp technique on the apical membrane of primary cultures of rat IMCD cells grown on permeable supports. We found that all ion channels detected in the cell-attached configuration were highly selective for Na+ (Li+) over K+. The open/closed transitions showed slow kinetics, had a slope conductance of 6-11 pS, and were sensitive to amiloride and benzamil. Nonselective cation channels with a higher conductance (25-30 pS), known to be present in IMCD cells, were not detected in the cell-attached configuration, but were readily detected in excised patches. The highly selective channels had properties similar to the recently described rat epithelial Na+ channel complex, rENaC. We therefore asked whether rENaC mRNA was present in the IMCD. We detected mRNA for all three rENaC subunits in rat renal papilla and also in primary cultures of the IMCD. Either glucocorticoid hormone or mineralocorticoid hormone increased the amount of alpha-rENaC subunit mRNA but had no effect on the mRNA level of the beta-rENaC or gamma-rENaC subunits. From these data, taken in the context of other studies on the characteristics of Na+ selective channels and the distribution of rENaC mRNA, we conclude that steroid stimulated Na+ absorption by the IMCD is mediated primarily by Na+ channels having properties of the rENaC subunit complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry

A highly selective, amiloride-sensitive, epithelial sodium channel from rat colon (rENaC), composed of three homologous subunits termed alpha, beta, and gamma rENaC, has been cloned by functional expression and was proposed to mediate electrogenic sodium reabsorption in aldosterone-responsive epithelia. To determine whether rENaC could account for sodium absorption in vivo, we studied the cellu...

متن کامل

Mechanisms of inactivation of the action of aldosterone on collecting duct by TGF-beta.

The purpose of these experiments was to investigate the mechanisms whereby transforming growth factor-beta (TGF-beta) antagonizes the action of adrenocorticoid hormones on Na(+) transport by the rat inner medullary collecting duct in primary culture. Steroid hormones 1) increased Na(+) transport by three- to fourfold, 2) increased the maximum capacity of the Na(+)-K(+) pump by 30-50%, 3) increa...

متن کامل

A rat kidney tubule suspension for the study of vasopressin-induced shuttling of AQP2 water channels.

AVP increases the osmotic water permeability of renal collecting ducts by inducing the translocation of specific aquaporin-2 (AQP2) water channels from cytoplasmic vesicles to the apical plasma membrane of the principal cells. Here, we report a novel inner medullary tubule suspension for the study of this phenomenon that overcomes some of the drawbacks faced by present techniques; both primary ...

متن کامل

Na channel expression and activity in the medullary collecting duct of rat kidney.

The expression and activity of epithelial Na(+) channels (ENaC) in the medullary collecting duct of the rat kidney were examined using a combination of whole cell patch-clamp measurements of amiloride-sensitive currents (I(Na)) in split-open tubules and Western blot analysis of alpha-, beta-, and gamma-ENaC proteins. In the outer medullary collecting duct, amiloride-sensitive currents were unde...

متن کامل

Apical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3).

The collecting duct is the primary site of urinary ammonia secretion; the current study determines whether apical ammonia transport in the mouse inner medullary collecting duct cell (mIMCD-3) occurs via nonionic diffusion or a transporter-mediated process and, if the latter, presents the characteristics of this apical ammonia transport. We used confluent cells on permeable support membranes and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 1995